
Releasing Internal Code into a
New Open Source Project:
A Guide for Stakeholders
November 2022

Ibrahim Haddad, Ph.D.
Executive Director, LF AI & Data and PyTorch Foundation

In partnership with:

Contents

Infographic ...4

Abstract ...5

Introduction ..6

Initial investigations ..8

Make the business case to open source ...8

Evaluate possible ways to open source ..8

Project funding ...9

Legal considerations ...9

Confirm ownership of all the code..9

Conduct intellectual property review ...10

Choose the open source license ..10

Apply license terms to the code ..11

Code clean-up ..11

Project branding ..12

Develop a trademark strategy and policy ..12

Domain names ...12

Creative assets ..12

Register external accounts ..12

Develop a certification/compliance strategy ...12

Recruit business partners ..12

Establish project governance ..13

Set up project infrastructure ...14

Apply recommended practices for your GitHub repo ...14

Project launch ...15

Prepare the announcement ...15

Press and analyst relations ..15

Announce and launch the project ..15

Summary of recommended practices for running an open source project16

License ..16

Governance ..16

Access ..16

Processes ..16

Development ..16

Community ..16

Community structure ..16

Releases ..17

Communication tools ..17

Transparency ...17

Documentation ...17

Ongoing support ...18

Support the community ..18

Support project infrastructure..18

Endnotes ...18

Copyright © 2022 The Linux Foundation | November 2022
This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License

Infographic

Infographics to come.

MAKE AVAILABLE ALL
DOCUMENTATION

on architecture, APIs,
tutorials, and guides

for installation,
development, and

participation.

Structure the community
to promote scalable
activity from those who
ADD VALUE, WHETHER
THEY ARE NEWCOMERS,
ESTABLISHED MAINTAINERS,
END-USERS, OR DEVELOPERS.

PROVIDE REGULAR COMMUNITY
SUPPORT by holding meetings and
events, issuing project
updates, answering
questions, pulling patch
submissions, and
creating accountable
and trackable KPIs and goals.

Provide STABLE RELEASES
AT A DEFINED AND

TRANSPARENT CADENCE
that promote new
functionality while

maintaining reliability
and security for users

and developers.

Manage the
DEVELOPMENT OF THE

PROJECT THROUGH
CAPABLE INDIVIDUALS

MEETING QUALITY
STANDARDS at multiple

levels of review before
entering the final release.

Establish OPEN
AND ACCESSIBLE
COMMUNICATION
TOOLS to anyone
wishing to participate
in the project.

Establish a community
culture that strives for
ACCESSIBILITY,
VISIBILITY,
SELF-ORGANIZATION
AND RESILIENCE.

Allow OPEN ACCESS TO
PROJECT RESOURCES
for anyone interested
in participating in
and contributing
to the project.

License your project
under an OSI-APPROVED
OPEN SOURCE LICENSE
to freely create and
distribute derivative
works.

Set up a transparent
and equalizing

governance model to
SUPPORT THE

HEALTH, LONGEVITY,
AND GROWTH
of the project.

</>
</>

</>

To attract participation,
MAINTAIN
TRANSPARENCY
in contributions, peer
reviews, discussions,
and maintainer or
committer promotions.

DOCUMENT ALL PROJECT
PROCESSES to maintain
standards around
commits, requests, peer
reviews, and member
roles, and be open to
revising them with
community feedback.

https://linuxfoundation.org/

5Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Abstract

Corporate participation in open source has reached an all-time high and continues
to grow as companies realize the value of consuming and contributing to open source
projects. The nature of corporate participation continues to evolve, as companies
increasingly discover that open sourcing proprietary technologies can create new
sources of value and stronger product ecosystems.

Open sourcing a proprietary technology involves far more than just making the source
code available. There are many ways of building or joining communities to use and help
maintain the project, which is why it should be a well-ordered and deliberate process.

For companies that plan to open source proprietary code as a standalone open source
project, this paper offers a high-level overview of the process and provides a sample
checklist that can help ensure that all tasks are properly captured and executed.

6Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Introduction
Open source software (OSS) has been shifting the software
industry into a new paradigm, moving from developing propri-
etary code behind closed doors to developing code that parties
can share, modify, and redistribute openly. The key benefits
of this shift include reducing development costs and software
component complexity, developing reusable, common, off-the-
shelf software assets, increasing flexibility, and benefiting from
the innovation multiplier factor of community-driven development
projects. Organizations that embrace the open source model as
a positive means of building software will increase their chances
of retaining their competitive advantage. Figure 1 illustrates the

various strategic advantages that OSS offers to organizations
adopting it and contributing to it.

During the previous two decades, organizations have realized
the benefits of using and contributing to open source projects in
their products and services. This has created a trend of organiza-
tions setting up Open Source Program Offices (OSPOs) to manage
all aspects of OSS, including the use of and compliance with OSS
licenses, contribution to OSS projects, and community-building
around key OSS technologies.

FIGURE 1

Why Open Source? Neutral
environment for
collaboration &

cross-pollination

1
Enables better

interoperability

4

Lowers barriers to
enter a new domain

7
Leads to better

products, improved
quality, and

improved security

9
Qualifies reference

architectures

6

Minimizes
fragmentation
and supports
the upstream

development model

3
Innovation

multiplier —
community driven

2
Facilitates

standardization on
open technologies

5

Enables business
opportunities
supported by

a flexible
licensing model

8
Allows fast trailing

12 months and
shared cost of
development

10

7Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Figure 2 illustrates four primary OSS enterprise strategies: consumption of OSS, participa-
tion, contribution, and leadership. Each strategy requires an enterprise to succeed at the
previous strategy, and how far an organization advances depends entirely on the enter-
prise. Engineering drives the early strategies of consumption and participation. Engineers use
various open source components for their technical merits to speed up development, but they
participate little in the projects that maintain these components. Over time, higher levels of
the organization learn about the value of this OSS usage. As OSS gains traction, business needs
begin to drive such OSS involvement, and OSS efforts contribute to a determined business
strategy. Some companies achieve their goals as consumers. Other companies see strategic
advantages in other stages of involvement and in most cases they set up an OSPO to oversee
strategic planning and execution through these stages.

As part of the third stage—contributing to open source—organizations often choose to
contribute key proprietary technologies to open source with various motivations, such as the
following:

• Providing a reference implementation to a standard

• Ensuring that critical software remains viable

• Undercutting the competition

• Commoditizing a market

• Partnering with others and promoting goodwill in the developer community

• Driving market demand by building an ecosystem

• Offering customers the ability to support themselves and add custom features

Open sourcing with the wrong motivation will often have a negative effect on achieving the
desired outcome and can disrupt the relation of the enterprise with the communities of
specific open source projects.

This paper identifies questions to ask, practices to consider, and steps to take when making
a proprietary technology open source. Figure 3 illustrates the various steps involved in the
process of open sourcing internal code and launching it as an open source project. These
steps are not necessarily executed in a linear order and several of them can be taking place in
parallel. Our goal with this paper is to provide a basic template that organizations can adjust to
accommodate their own policies and strategies.

CONSUMER

PARTICIPANT

CONTRIBUTOR

LEADER

Continuous participation and

contribution to open source project

FIGURE 2

Enterprise open source ladder

FIGURE 3

Steps involved in the process of open-sourcing

Initial
Investigations

Funding

Legal

Branding
Governance

Partners

Infrastructure

Project
Launch

Ongoing
Support

8Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Initial investigations
When open sourcing proprietary technology, it is important
to thoroughly evaluate the reasons for the transition and align
internal incentives and metrics accordingly. Open sourcing for the
wrong reasons could have the opposite effect than is originally
intended. To successfully open source a project, you must have the
right reasons or motivations.

Make the business case to open source
There are many sound business reasons for open sourcing propri-
etary code, such as the following:

• Strengthening the ecosystem for the product or service you
are building

• Improving product quality by engaging business partners and
customers in enhancing features and fixing bugs

• Providing a reference implementation to a standard,
thereby driving the adoption of your software as a de facto
implementation

• Commoditizing non-strategic layers of a software stack

• Pushing the value line higher and forcing more innovation

• Partnering with open source communities and increasing
goodwill within the developer communities

Equally, there are many counterproductive reasons to open source
proprietary code. These arguments should act as red flags:

• You want others to maintain a codebase you still need so that
you can stop investing in that code

• You want to retire code with unique functionality that you will
no longer maintain or use in your products

• The source code links directly to code you cannot release
under an open source license

Now that you have a business case for open sourcing your code at
your organization, the next step is to determine the actual path to
open source.

Evaluate possible ways to open source
There is no single way to achieve the possible goal, and it’s not an
exercise that your organization has to do alone. In most cases,
there are multiple options that you can explore, such as the
following:

• Evaluate the technology and determine whether you should
open source any other components

• Analyze existing open source projects your company could
join as a major participant, reducing your need to create new
infrastructure and a new community

• Explore the possibility of launching the planned open source
project with some of your existing clients and partners

• Evaluate the option of launching and hosting the planned open
source project in an open source foundation with a record of
launching and sustaining successful open source projects.

9Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Project funding
Once you have made the business case for open source, you’ll
need a project plan and time-phased budget covering the costs to
launch and maintain the project over time. Some of the costs are
one-time and others are recurring. Examples of such costs include
the following:

• Internal legal efforts leading to posting the code publicly

• Ongoing IT project infrastructure and cloud credits (when
applicable)

• Trademark management

• Creative and branding (logo, website, signage at events, etc.)

• Project management

• Regularly scheduled open source license compliance and
security scans

• Community events and hackathons

Legal considerations

On the legal side, there are five major activities that need to be
executed. These include:

1. Confirming ownership of all the source code intended for
open source

2. Conducting intellectual property review

3. Choosing an open source license

4. Applying the license terms to the code and updating the
license information in the source code

5. Cleaning up the source code before posting it in public

In the following subsections, we cover these various activities and
provide recommendations where applicable.

Confirm ownership of all the code
One of the risks in open sourcing proprietary technology is the acci-
dental inclusion of third-party proprietary code as part of the open
sourced code. Before releasing any code under an open source
license, it is highly recommended that an organization holds all the
rights and permissions necessary to open source the code.

Some of the steps in this exercise include the following:

• Auditing the source code with a software composition analysis
(SCA) tool1

• Identifying third-party source code—open source or
commercial

• Determining whether you have the right to open source any
found third-party commercial code under an open source
license; if the answer is no, you cannot open source some
third-party code, then you need to provide alternate code

10Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Conduct intellectual property review
Software likely subject to patent or other intellectual property
claims is not an ideal candidate for open source release. Here are
questions to ask to help you with this exercise:

• Does the code disclose or realize any inventions the company
plans to protect through patents?

 ° If the answer is yes, then you need to decide whether
to remove the code, establish an IP policy, or make a
nonassertion pledge. In all cases, your legal counsel will
make the appropriate recommendations for next steps
when such a scenario arises.

• Will the source code release trigger patent claims against the
open-source software?

 ° If the answer is yes, then you have to remove and replace
the protected code or seek appropriate licenses or
permissions.

• Does the name you chose for the open source project
(assuming you’re starting a new project) protectable
under trademark law? Does the name or any trademarks
associated with or registered to the project present any risk of
infringement claims?

Choose the open source license
The license of an open source project determines the rights to
use, copy, modify, and distribute the code. The choice of license
for an open source project is an essential factor in determining
the openness of the project. Open source projects should only
use licenses that the Open Source Initiative has approved. Such
licenses allow software to be freely used, modified, and shared.
To be approved by the Open Source Initiative, a license must go

through its license review process to confirm that the license
satisfies its Open Source Definition (OSD). You may come across
many other licenses that are incompatible with the OSD. Most
of these licenses are “Source Available” licenses that commonly
include restrictions or limitations on the use and/or distribution of
the software. These restrictions often render the licenses incom-
patible with the OSD.

It is always recommended to adopt an OSI-approved open source
license. The choice of the specific license depends on the specific
goals you want to achieve as an organization. We preview in this
section some of the questions that will drive a discussion on this
topic and help you make a decision on the license to adopt.

• Do you want to relinquish control over how others use and
distribute the code?

• Do you want to allow others to use the code in commercial
programs and products?

• If others use the code in their program and sell it for money,
do you want a percentage of those revenues?

• If others use and distribute the code and improve it (e.g., fix
bugs or add features), do you want them to contribute those
improvements back to the project?
What licenses will you accept for contributed code?

• Will you require a Developer Certificate of Origin (DCO) or
a Contributor License Agreement (CLA) as a contribution
requirement?

There may be additional questions to consider as part of this
exercise, which is mainly driven by your legal counsel and tech-
nology leaders within your organization.

https://opensource.org/
https://opensource.org/approval
https://opensource.org/osd

11Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

DCO
The DCO sign-off process ensures that every single line of code
accepted into a project has a clear audit trail. It is a developer’s
certification that they have the right to submit code for inclu-
sion into the project. The Linux kernel process, for instance,
requires all contributors to sign off their code, which indicates
that the contributor certifies the code, as outlined in the DCO.
The signature communicates that the contributor has created
or received the contribution under an appropriate open source
license that incorporates it into the project’s codebase under
the license indicated in the file. The DCO establishes a chain
of people who take responsibility for the licensing and prove-
nance of contributions to the project.

CLA
Some projects require either developers or their employers to
sign a CLA. Unlike the DCO, the text of CLAs can vary signifi-
cantly from project to project, so the terms of any given CLA
may have different effects. The purpose of a CLA is to ensure
that the guardian of a project’s outputs has the necessary
ownership or grants of rights over all contributions to allow
them to distribute under the chosen license. In some cases,
this even means that the contributor will grant an irrevocable
license, which allows the project to distribute the contribution
as part of the project.

Apply license terms to the code
Once the source code has been cleaned up following the recom-
mendations provided in a previous step, it is time to apply the
license terms to the code. This exercise includes the following
steps:

• Add a license file in the root directory of the component
containing the full license text. For instance, if you are posting
the code on GitHub, you will provide a LICENSE.md file
containing the full text of the open source license

• Add license header and copyright notice to every source code
file

• Clearly designate the license on the project’s website, any
frequently asked questions (FAQ) that you provide, and the
download page if applicable

• Use SPDX2 License List “short identifiers” in source files

Code clean-up
Another risk to open sourcing a project is the inclusion of private
information, confidential communications, and trade secrets. To
minimize this risk, you can take the following actions:

• Remove any exposure of nonpublic application programming
interfaces (APIs).

• Remove any comments containing employee names or
personally identifying information, product code names, road
maps, future product descriptions, or disparagements.

• Remove any unused or obsolete code from the source
code to increase the likelihood of the community’s making
contributions.

• Create and include a file that contains the license and
copyright notices of all third-party software and, if applicable,
make the source code available.

• If the source code has dependencies on third-party code,
then provide the necessary information to the community; it’s
preferred that the code does not have any dependencies on
non-open source components.

• Remove any third-party proprietary code.

https://developercertificate.org/

12Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Project branding
Project branding includes a number of activities that should be
considered and are discussed in the following subsections.

Develop a trademark strategy and policy
• Agree on a name/mark for the project.

• Perform a knockout search to determine whether the
registrations will succeed.

• Specify internal contact for trademark (if not counsel).

• Develop a registration strategy:

 ° Which classes of goods/services apply?

 ° Which countries to prioritize?

• Register the tradename and trademark.

Domain names
• Register domains and set up redirects.

Creative assets
• Create the logo, logo package, and visual assets.

• Create and publish on the website the logo usage guidelines.

Register external accounts
• Set up the project organization name on GitHub.

• Set up @projectname on various social media platforms such
as Twitter, LinkedIn and Facebook.

Develop a certification/compliance strategy
• Decide the criteria projects must meet to claim compatibility

with the parent project.

• Create a specification document and tools that can verify
whether a custom build of the project complies with the
specification.

• Agree on the name/mark for the certification program.

• Develop a trademark policy/FAQ if you wish to control the
use of the project name. Ask these questions to drive a
conversation on the topic:

 ° May distributors, user groups, or developers register
domain names that include the project’s name?

 ° Will the project run certification programs allowing others
to use the mark for modified products?

• Create a certification test suite.

• Establish a contract with a testing facility.

• Schedule the first year of plugfests.

Recruit business partners
• Approach business partners that will benefit the most from

the project for public support on launch day.

• Secure commitments from key partners to encourage
employee participation in the project and have some basic
commitments.

• Approach compatible projects, communicate how the
new project will benefit them and prepare them for the
announcement.

• Anticipate conflicts where existing projects misinterpret the
launch as competition and defuse them before they start.

• Give business partners early access to project source code.

• Work with partners to establish a joint value proposition and
reference stack for shared customers.

13Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Establish project governance
Governance determines who has influence and control over the
project beyond what is legally required in the open source license. A
project’s governance model establishes a collaboration framework
that addresses difficult questions, such as the following:

• Contributions

 ° Who makes decisions for code inclusion and releases, and how?

 ° Who can be the lead maintainer or architect for the project
(larger projects have more than one)?

 ° How can the project contributors become maintainers or
committers?

• Direction and Finance

 ° How can the project raise money, and who decides how this
money is spent?

 ° Should the project have a Technical Steering Committee
(TSC) or a Conformance and Certification Committee? Who
can be on them?

 ° Who decides the project’s direction and road map?

• Transparency

 ° Who can participate in the discussions and decide on
critical matters?

 ° How transparent are the decision-making processes?

 ° Can anyone follow the discussions and meetings that take
place in the project?

• Reuse

 ° What compliance requirements are there for redistributing,
modifying, or using the software?

 ° How can the project enable contributors and downstream
redistributors to comply with these requirements?

• Copyright and Trademark

 ° Who owns the copyright on contributed code?

 ° How can users license the project’s branding?

Typically, the initial maintainers of the project form the TSC of
the project. These individuals are likely from the founding orga-
nization(s) of the project. The goal is to grow the TSC over time to
include high-value contributors.

• Project governance

 ° Identify members of the TSC.

 ° Identify primary duties of the TSC, such as the following:

 » Overseeing software architecture and implementation
activities

 » Drafting the release plan and road map

 » Working with other open source projects on which the
new project depends

 » Setting the criteria for accepted/rejected code

 » Managing source code security issues

• Project processes: A project with a high degree of openness
will have clearly defined processes for how things work in the
community and how to contribute to the project. For starters,
a clear development process should outline how to incorpo-
rate code into the project, the release process and schedule of
the project, and any requirements developers need to meet to
get their code accepted. This should also include guidelines for
participation that demonstrate community best practices for
things like patch submissions, feature requests, bug reports,
and signing off on code contributions.

 ° Feature request

 ° Release management

 ° Code submission

 ° Bug reporting

• Project agreements

 ° Develop a third-party contribution agreement to govern
how the project will manage contributions from the
community.

14Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Set up project infrastructure
• Documentation

• Project website

• Wiki

• Community communication channels

 ° Mailing list

 ° Live chat (e.g., Slack, Internet Relay Chat (IRC))

• Collaboration platforms

 ° Wiki

 ° GitHub repositories (or manage your own git servers)

• Bug tracking and feature requests

• Build system

Apply recommended practices
for your GitHub repo
1. Use the REPOLINTER tool created by the TODO Group to

identify common issues in GitHub repos.

2. Secure your GitHub account with two-factor authentication.

3. Ensure that every repo includes a LICENSE file.

4. Add a README file to your repos welcoming new community
members to the project and explaining why the project is
useful and how to get started.

5. Add a CONTRIBUTING file to your repos explaining how
to contribute to the project to other developers and your
community of users. At a high level, the file would explain what
types of contributions are needed and how the process works.

6. Add a CODEOWNERS file to define individuals or teams
responsible for code in a repository.

7. Add a CODE _ OF _ CONDUCT file that sets the ground rules
for participants’ behavior and helps facilitate a friendly,
welcoming environment. While not every project has a
CODE _ OF _ CONDUCT file, its presence signals that this is a

welcoming project to contribute to and defines standards for
engaging with the project’s community.

8. Provide documentation on the release methodology,
cadence, criteria, etc.

9. Document your project governance and make it available on
the project’s repo.

10. Add a SUPPORT file to let users and developers know how
to get help with your project. You can either add how and
where this file handles security issues, put it at the project’s
top-level README, or refer to security documentation.

11. Set up an issue template and pull request templates that
help you customize and standardize the information you’d
like contributors to include when they open issues and pull
requests in your repository.

12. Achieve and maintain your project’s OpenSSF Best Practices
Badge (previously called the Core Infrastructure Initiative
Best Practices Badge).

13. Identify who will handle security issues (this could be a team)
and set up a separate email account.

14. Consider having the project become a CNA (CVE Numbering
Authority).

15. Include an SPDX short-form identifier in a comment at the
top of each file in the repo wherever reasonably possible.

16. Adopt the GitHub DCO app to enforce a “Signed off-by:” tag
in each commit. The DCO is an easy way for contributors to
certify that they wrote or otherwise have the right to submit
the code they are contributing to the project. The app
enforces the DCO on Pull Requests. It requires all commit
messages to contain the Signed-off-by line with an email
address that matches the commit author.

17. Use English as the default universal language for anything
you publish on GitHub. You can support a second language,
but English should be the primary language of communica-
tion toward a universal audience.

https://github.com/todogroup/repolinter
https://todogroup.org/
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://github.com/apps/dco

15Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Project launch

Prepare the announcement
• Brief launch partners.

• Check that all project infrastructure is running, secure, and
scalable.

• Subscribe key project personnel to project mailing lists.

• Make sure internal developers join and continually monitor
the live chat.

Press and analyst relations
• Establish launch strategy and timeline.

• Draft press release and get signoff from all involved parties.

• Identify spokesperson and media contact.

• Create internal and external FAQ.

• Manage ongoing press and analyst relations.

• Develop the ongoing public relations/analyst relations
strategy.

• Engage a PR/AR firm if needed to deliver fully on the strategy.

Announce and launch the project
• Release source code.

• Publish a road map, even if it is preliminary.

• Follow the open source development model.

• Monitor effects of PR/AR strategy across touchpoints.

16Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Summary of recommended practices for
running an open source project

License
OSI-approved open source license offering the freedom to create
and distribute derivatives.

Governance
A governance model that gives equal footing to all current and
future contributors to the project. Open source projects with an
open and transparent governance model have better chances to
grow, have a healthy environment, and attract developers and
adoptees.

Access
Project resources are accessible to any users or developers inter-
ested in the project. Anyone can participate in the project, and any
participant can earn committer rights by contributing and building
trust with the project’s community.

Processes
• General project processes are documented for requesting a

feature, reporting bugs, submitting code, etc.

• Source code contributions are only committed through the
project’s defined process for incoming contributions.

• All code goes through a peer review process.

• The process to become a committer/maintainer/reviewer is
enforced by the project for consistency.

• The project’s community revises its processes based on
incoming feedback to ensure they continue to meet the
project’s needs as it grows and scales.

Development
• Responsibility for development is allocated to the individuals

with the best capacity to deliver.

• The project enforces quality standards when merging code.

• The project implements multiple levels of review before
entering the final release.

• Peer review is mandatory and public.

Community
• Accessible to newcomers—open development generally

strives for inclusiveness.

• Focused on visibility with emphasis on open decision-making
processes and communication.

• Self-organizing; individuals contribute in their areas of interest
or those of their employers.

• Resilient to organizational change, given that leadership comes
with experience. If individuals cease to participate, there are
others to take their place.

Community structure
• Meritocracy drives advancement and acceptance. Contributors

who provide the most value to the community are granted
project leadership roles.

• The project welcomes newcomers who have the freedom and
access to participate in public discussions, development, and
testing.

17Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

• The project’s hierarchy is scalable because it consists of
maintainers who oversee specific bodies of code in levels that
can be added or removed as needed based on the size of the
community.

• Anyone can submit patches, and both developers and users
are involved in the testing process. The roles of developer and
user are closely integrated with open source development,
allowing users to have a more direct path to influencing the
project.

Releases
• To protect certain users from the instability of rapidly

developing software, projects provide stable releases that
restrict the addition of experimental features to provide a
reliable version that better supports use cases that rely on
stability.

• Weekly or monthly stable releases provide users and
developers with the newest functionality after it has been
tested.

• Long-term stable versions extend to longer periods and often
only include security patches and bug fixes.

• The project has a defined cadence for its releases, with set
goals per release.

• The release cadence and the goals to be met by each release
are known to all project stakeholders.

Communication tools
Tools, including mailing lists, Slack, and IRC, are available and open
to anyone wishing to participate in the project.

Transparency
Open source communities must be as transparent as possible to
attract new participation, such as contribution transparency, peer
review transparency, transparency of discussions, and
transparency of promotion to committer or maintainer.

Documentation
Availability of documentation covering architecture, APIs, instal-
lation guides, developer guides, development processes, partici-
pation guides, tutorials, etc.

18Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Ongoing support
After the project has launched, it is essential to monitor the vitality of the external community and support the project in various areas
to nurture it and support the growth of its community.

Support the community
• Meet regularly with key stakeholders.

• Issue regular project updates through the website, PR, and
social media.

• Respond to questions from the community in communication
channels.

• Review patch submissions and pull them into the codebase as
necessary.

• Coordinate events to cultivate community and promote the
technology.

• Develop a set of KPIs for project success, track these metrics,
and develop and implement plans to ensure the attainment of
these goals.

Support project infrastructure
• Keep content on the website and wiki up to date.

• Provide ongoing guidance to trademark counsel.

• Manage trademark over time.

• Manage domain registrations and renewals.

• Monitor and moderate communication channels (mailing lists,
IRC, forums, etc.).

• Maintain press and analyst relations.

• Develop the ongoing PR/AR strategy, and engage with a firm to
provide an appropriate level of service.

Endnotes
1 �SCA tools are applications that support software development teams to ensure open source license compliance and improve the security of the code. At a high level,

they perform automated scans on source codebases. The tools also help the team identify open source components and their license and flag any known security
vulnerabilities.

2 �The Software Package Data Exchange® (SPDX®) is an open standard for communicating software bill of material information between organizations as well as from
upstream open source projects into an organization.

19Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Conclusion
There are many ways to successfully open source proprietary technology. This paper provides a high-level overview of the process
and can be used as a base for a more detailed internal plan. It is important to acknowledge that this checklist may not be complete
and differs between organizations and projects. The goal is to provide the most common tasks associated with open sourcing internal
projects and make them available to ease the process. While this process may seem complex and lengthy, many organizations have
successfully followed similar procedures to bring internal code to market as an open source project and, in the process, have automated
a lot of tasks and used project management tools to coordinate and track all tasks.

For more information on creating successful open source projects and working with open source communities, please visit the Linux
Foundation website for a host of free resources available to help you with your open source journey.

Acknowledgments
The author would like to express his sincere appreciation to his Linux Foundation colleagues Hilary Carter, Jason H. Perlow, and Melissa
Schmidt for their valuable reviews and feedback. This report has benefited immensely from their experiences and contributions.

Linux Foundation resources
• E-book: A Deep Dive into Open Source Program Offices

• E-book: Guide to Enterprise Open Source

• E-book: Open Source Compliance in the Enterprise

• E-book: Open Source Audits in Merger and Acquisition
Transactions

• Linux Foundation Enterprise Guides

• Linux Foundation Open Compliance Program—Resources to
support organizations with open source compliance.

• TODO Group—Open community of practitioners and
organizations that collaborate on best practices, tools, and
other ways to run successful open source programs.

• Software Package Data Exchange® (SPDX®)

https://www.linuxfoundation.org/tools/a-deep-dive-into-open-source-program-offices/
https://linuxfoundation.org/tools/guide-to-enterprise-open-source/
https://www.linuxfoundation.org/publications/open-source-compliance-enterprise/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/
https://www.linuxfoundation.org/resources/open-source-guides/
https://compliance.linuxfoundation.org/
http://todogroup.org/
https://spdx.dev/

20Releasing Internal Code into a New Open Source Project: A Guide for Stakeholders

Feedback
The author apologizes in advance for any spelling mistakes or possible errors and is grateful to receive corrections and suggestions for
improvements via ibrahimatlinux.com/contact.html

About the author
Dr. Ibrahim Haddad is Vice President of Strategic Programs at the Linux Foundation. He focuses on facilitating
a vendor-neutral environment for advancing the open source AI platform and empowering generations of
open source innovators by providing a neutral, trusted hub for developers to code, manage, and scale open
source technology projects. Haddad leads the LF AI & Data Foundation and the PyTorch Foundation. His work
and the work of both foundations support companies, developers, and the open source community in iden-
tifying and contributing to the technological projects that address industry and technology challenges for the
benefit of all participants.
Twitter: @IbrahimAtLinux
Website: IbrahimAtLinux.com
Fun project: Tux NFT Club

Disclaimer
This report is provided “as is.” The Linux Foundation and its authors, contributors, and sponsors expressly disclaim any warranties
(express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or
title, related to this report. In no event will The Linux Foundation and its authors, contributors, and sponsors be liable to any other party
for lost profits or any form of indirect, special, incidental, or consequential damages of any character from any causes of action of any
kind with respect to this report, whether based on breach of contract, tort (including negligence), or otherwise, and whether they have
been advised of the possibility of such damage. Sponsorship of the creation of this report does not constitute an endorsement of its
findings by any of its sponsors.

http://www.ibrahimatlinux.com/contact.html
https://twitter.com/ibrahimatlinux
about:blank
https://tuxnft.club/

 twitter.com/linuxfoundation

 facebook.com/TheLinuxFoundation

 linkedin.com/company/the-linux-foundation

 youtube.com/user/TheLinuxFoundation

Founded in 2021, Linux Foundation Research explores the growing scale of open source collaboration,

providing insight into emerging technology trends, best practices, and the global impact of open source

projects. Through leveraging project databases and networks, and a commitment to best practices in quan-

titative and qualitative methodologies, Linux Foundation Research is creating the go-to library for open

source insights for the benefit of organizations the world over.

Copyright © 2022 The Linux Foundation

This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License.

To reference the work, please cite as follows: Ibrahim Haddad, “Artificial Intelligence and Data in Open Source:

Challenges and Opportunities for Mass Collaboration at Scale,” foreword by Dr. Seth Dobrin, March, 2022.

Part of the Linux Foundation, LF AI & Data
supports open source innovation in arti-
ficial intelligence, machine learning, deep
learning, and data. LF AI & Data was estab-
lished to support a sustainable open source AI
ecosystem that makes it easy to create AI and
Data products and services using open source
technologies. We foster collaboration under a
neutral environment with an open governance
model to support the harmonization and
acceleration of open source technical projects.

https://twitter.com/linuxfoundation
youtube.com/user/TheLinuxFoundation
https://inkedin.com/
youtube.com/user/TheLinuxFoundation
https://linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/

	Infographic
	Abstract
	Introduction
	Initial investigations
	Make the business case to open source
	Evaluate possible ways to open source

	Project funding
	Legal considerations
	Confirm ownership of all the code
	Conduct intellectual property review
	Choose the open source license
	Apply license terms to the code
	Code clean-up

	Project branding
	Develop a trademark strategy and policy
	Domain names
	Creative assets
	Register external accounts
	Develop a certification/compliance strategy
	Recruit business partners
	Establish project governance
	Set up project infrastructure
	Apply recommended practices for your GitHub repo

	Project launch
	Prepare the announcement
	Press and analyst relations
	Announce and launch the project

	Summary of recommended practices for running an open source project
	License
	Governance
	Access
	Processes
	Development
	Community
	Community structure
	Releases
	Communication tools
	Transparency
	Documentation

	Ongoing support
	Support the community
	Support project infrastructure

	Endnotes

