


Software Engineering 
and Functional Safety

Pete Brink, Functional Safety Engineering Leader, kVA by UL



Agenda

• Introduction
• What is Software Engineering?
• The SWEBOK
• How do you know when you’re done?

Safety
• Differences between Quality and Safety
• Safety Analysis
• Code Coverage



• In this presentation we seek to answer the questions:
– How do you know when you’re done?
– What is quality and how can we demonstrate it?
– What is the difference between quality and safety?



Introduction



• Who is Pete?
– Current: FS Engineering Leader for kVA by UL
– Past:

• Jet Engine Control Systems
• Print Servers
• Cable Scanners
• MPLAB
• Intel – SW Engineering Curriculum, Autonomous Driving
• Industrial Lasers 



• Who is Pete?
– Software Engineering Program Evaluator for ABET
– Past:

• SWECOM Update
• SWEBOK Update

– Currently collaborating with the LF and others to create an 
introductory class (2-3 hours) on SW Engineering
• Volunteers welcome



• References
– SWEBOK - SWEBOK Main Page
– SWECOM - SWECOM Download
– ABET - ABET Home Page
– CC2020 - ACM CC 2020

http://swebokwiki.org/Main_Page
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.abet.org/
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf


What is Software Engineering?



• What is Software Engineering?
– According the CC 2020 (from the ACM):

• “Software engineering (SE) is an engineering discipline that 
focuses on the development and use of rigorous methods
for designing and constructing software artifacts that will 
reliably perform specified tasks.” (page 28)



• Software Engineer vs. Software Engineering
– CC 2020:

• “The term “software engineer” (used to denote a 
profession) is much more broadly employed than “software 
engineering” as an academic discipline or a degree 
program. There are many more individuals with a job title or 
professional identity of a “software engineer” than those 
who have graduated from software engineering programs.” 
(page 28)



• What is Software Engineering?
– Restated by Pete:

• “Software engineering is the method by which we, the 
software engineers, control the amount of systematic error 
we build into the system.”

or
• “The method by which we can definitively demonstrate that 

a given software system is complete prior to release.”



The SWEBOK and the SWECOM



• SWEBOK
– The Software Engineering Body of Knowledge
– Created and maintained by the IEEE-CS
– Contained in a Wiki Page to be made generally 

available for anyone to use
– The SWEBOK is a basic reference outlining all the 

topics in software engineering



• SWEBOK
– 15 Categories of skills covering everything from 

basics of software engineering to software 
economics



• SWECOM
– The Software Engineering Competency Model
– Created and maintained by the IEEE-CS
– Free to download as a PDF
– The SWECOM is a competency framework for 

evaluating skill



• SWECOM
– 5 competency levels across 13 Categories of skills
– Skills are grouped into two different categories:

• Lifecycle Skills
• Cross Cutting Skills



• Lifecycle Skills:
– Requirements: Elicitation, Analysis, Verification
– Design: Architecture, Design, Patterns, Verification
– Construction: Coding, Debugging, Review
– Testing: Unit, Integration, CI, Defect Tracking
– Sustainment: Support, Maintenance



• Cross Cutting Skills:
– Process: SDLC, Assessment and Improvement
– Systems Engineering: Systems Process, Concept
– Quality, Safety, Security: QM, Audit & Assessment
– Configuration: Managing updates and releases
– Measurement: Performance Analysis, Optimization
– Human-Computer Interaction: Usability, Testability



• Competency Model
– The SWECOM also includes a competency model 

for each of these skills
• Technician : Follows
• Entry Level Practitioner : Assists
• Practitioner : Participates
• Technical Leader : Leads
• Senior Software Engineer : Creates



Issue: How do you know when you’re done?



• Software Development Life Cycle (SDLC):
– SDLC defines a framework where there are specific 

methods for each stage of development
– “Waterfall”, Spiral, Iterative, “Agile”
– Why do we follow a process?



• Development models exist to demonstrate:
– Project completion
– Achievement of stated properties in the final product
– System properties can be:

• Quality
• Safety
• Security



• System “V” model
– From Systems 

Engineering
– “Outside-In”
– Can be applied at 

the system or 
component level

V Model

Requirements

Architecture

Design

Implementation
Unit Testing

Component Testing

Integration Testing

System TestingValidation

Verification

Verification

Verification

Verification

Verification



So…
– How do you know when you’re done?



So…
– How do you know when you’re done?

• You can demonstrate that all the requirements 
have been fulfilled



Now that we can demonstrate that we are 
complete, how do we know that the product was 
built with sufficient quality?

• What is Quality?



• Quality is…
– Meeting or exceeding your customers expectations 

(requirements)
– Bug Rate (a bad metric for controlling quality)
– Adherence to process (controlling the quality at each 

step during the lifecycle)



• Why is bug rate a bad metric?



• Why is bug rate a bad metric?

– It’s too late
– Because software is systemic, we need to get rid of 

the bugs before we write the code



Safety



• According to ISO 26262:2018, safety-critical 
software is:
– SW that enables safe execution of a nominal 

function
– SW that enables the system to achieve or maintain a 

safe state
– SW that detects, indicates or mitigates HW faults
– …



• Most importantly, safety standards expect that 
all safety software is developed according to a 
quality standard:
– ISO 9001 (+IATF 16949)
– ASPICE (Automotive Software Process 

Improvement Capability dEtermination)
– ISO 12207



• Differences between quality and safety:
– Safety-critical software is expected to go through a 

safety analysis phase
• SW FMEA (Failure Modes and Effects Analysis)
• DFA (Dependent Failure Analysis or Freedom From 

Interference)



• Differences between quality and safety:
– Unit verification that cover as close to 100% of the 

source code as possible (type of coverage varies 
based on criticality):
• Statement coverage
• Branch coverage
• MC/DC (Modified Condition/Decision Coverage)

– Call and Function coverage at the architecture level



Summary



• Software Engineering is a broad discipline
• Following a systematic approach, we can create 

software that can demonstrate:
– Quality
– Safety
– Security : follows the same model as safety



Thank You

Please direct any queries to: peter.brink@ul.com

mailto:peter.brink@ul.com


We hope it will be helpful in your journey to learning more about effective and productive 
participation in open source projects. We will leave you with a few additional resources for 
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills 
and resources to experiment, learn and contribute effectively to open source 
communities.

● Outreachy remote internships program supports diversity in open source and free 
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and 
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels 
and topics, as well as the chance to meet others in the community, to collaborate, 
exchange ideas, expand job opportunities and more. You can find all events at 
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/

